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have complex aliasing, like the Plackett-Burman designs, they are best
analyzed with a regression subset procedure as described above. Some au-
thors such as Lin (1999) have suggested the use of forward stepwise regression
to identify an appropriate model for data arising from a design with complex
aliasing. To illustrate this proceedure in R, consider again the data for the
cast fatigue experiment. The step function could be used as shown below to
identify a model.

> null <- lm( y ~ 1, data = castfr )

> up <- lm( y ~ (.)^2, data = castfr )

> step( null, scope = list(lower = null, upper = up),

+ direction = "forward", steps=4)

This code operates on the reduced data frame castfr containing only the main
effect columns and the response from the Plackett-Burman design created in
the code shown earlier. null defines a model with the minimum number of
terms to be considered. In this case that is a model with only an intercept. up
defines the set of all terms to be considered for the model. In this statement the
model formula, y ~ (.)^2, creates all main effects and two-factor interactions.
In the call of the step function, null is specified as the starting model and the
option steps=4 specifies the maximum number of forward steps. This should
normally be set to 1/3 of the number of runs in the design because due to
the effect sparsity principle there will rarely be more than that number of
important effects. The step function uses the AIC or equivalently Mallows’s
Cp to decide whether additional terms should be added to the model. Running
this code results in two forward steps. In the first step, main effect F is added
to the model, and in the second and final step, main effect D is added to the
model.

In the analysis of the cast fatigue experiment discussed earlier, two al-
ternative two-variable models were plausible. Authors of the original article
describing the experiment thought the model including main effects F and D
was appropriate, but using all-subsets regression, the two-variable model (F
and FG) fit the data much better. This model does not include any interac-
tions that do not involve at least one of the main effects in the model (effect
heredity).

In some cases, there there may be more than one model that fits the data
well. A forward selection procedure only identifies one of these models. An
all-subsets selection procedure can identify all of the models that fit the data
well. However, the concern when using the all-subsets regression is an increase
in computations, especially for designs with a large number of factors.

To alleviate the concern about increased computations required for all-
subsets regression, Hamada and Wu (1992) proposed a more involved iterative
stagewise forward stepwise regression approach, guided by the principle of ef-
fect heredity, that overcomes some of the objections to using a straight forward
regression. Jones and Nachtsheim (2011) proposed a simpler approach to for-
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ward regression that also forces effect heredity. Their approach, incorporated
with the “Combine” option in the JMP forward stepwise regression, requires
that any forward step that enters an interaction effect to the model also enters
the main effects involved in that interaction. This avoids finding models that
do not obey effect heredity (a situation that occurred less than 1% of the time
in Li et al.’s (2006) study of 113 published factorial experiments).

The function HierAFS() in the package daewr performs a stepwise forward
regression that also includes both main effects involved in any interaction
added to the model in order to insure model hierarchy like the ”Combine”
option in the JMP forward regression. An example of the use of this function
with the data from the cast fatigue experiment is shown below.

> des <- castfr[ ,c(1, 2, 3, 4, 5, 6,7 )]

> y <- castfr[ ,8]

> library(daewr)

> HierAFS(y,des,m=0,c=7,step=2)

formula R2

1 y~F+G+F:G 0.910

2 y~D+F+G+F:G 0.937

In the HierAFS function call the first argument, y is the vector of responses,
des is the design matrix, m=0 is the number of three level factors in the design,
c=7 is the number of two-level factors in the design, and step=2 is the number
of forward steps to make. This number is usually determined by the number
of steps just before the increase in R2 becomes negligible or just before the
last term to enter the model is not significant.

In the first step of the forward regression, it can be seen that the FG in-
teraction entered the model and the main effects F and G were automatically
included. In the second step, the main effect D entered the model. The code
and output below show the details of the first and second steps by printing
the summary of the two models fit by the lm function.

> mod1<-lm(y~F+G+F:G,data=des)

> summary(mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.73025 0.07260 78.930 7.4e-13 ***

F 0.45758 0.07260 6.303 0.000232 ***

G 0.09158 0.07260 1.261 0.242669

F:G -0.45875 0.07260 -6.319 0.000228 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2515 on 8 degrees of freedom
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Multiple R-squared: 0.9104,Adjusted R-squared: 0.8767

F-statistic: 27.08 on 3 and 8 DF, p-value: 0.0001531

> mod2<-lm(y~D+F+G+F:G,data=des)

> summary(mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.73025 0.06516 87.939 6.48e-12 ***

D -0.11831 0.06911 -1.712 0.130661

F 0.45758 0.06516 7.022 0.000207 ***

G 0.09158 0.06516 1.405 0.202676

F:G -0.41931 0.06911 -6.067 0.000507 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2257 on 7 degrees of freedom

Multiple R-squared: 0.9368,Adjusted R-squared: 0.9007

F-statistic: 25.95 on 4 and 7 DF, p-value: 0.0002713

Since the term, D, entered at the second step was not significant, the forward
regression should have stopped after the first step, and the hierarchical model
shown in the summary of mod1 is the same model for the data found by the
all-subsets regression.

In Plackett-Burman or alternative screening designs with a large number
of factors, the computational effort required to do an all-subsets regression
to search for the most appropriate model may be prohibitive. The HierAFS

function often finds an appropriate model with much less computation.
Other methods have been proposed to limit the number of candidate terms

for a model search. Lawson (2002) proposed limiting the interaction candi-
dates for an all-subsets regression based on the alias structure of the design.
He provides a SAS (Institute, 2012) macro to implement the method. Box
and Meyer (1993) proposed a Bayesian approach for identifying an appropri-
ate model, and Chipman et al. (1997) proposed using the Bayesian stochastic
search algorithm that incorporates the effect heredity principle through hered-
ity priors that capture the relation between the importance of an interaction
term and the main effects from which it is formed. Woodward (2011) has in-
corporated Chipman et al.’s (1997) search algorithm using the public domain
program WinBUGS (Spiegelhalter et al., 1999) that can be called through his
Excel add-in BugXLA. Wolters and Bingham (2011) proposed a simulated
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annealing model search with associated graphs that are used to identify good
canditate models and assess the degree of uncertainty in model selection. They
also provide MATLAB® (MATLAB, 2010) code to implement this strategy.
For designs where the CPU time required to run the regsubsets function (as
illustrated in the analysis of the cast fatigue experiment) is too long, one of
these alternate analysis strategies should be employed.

In many situations, model robust screening designs with complex aliasing
may reduce the total number of experiments required to identify the important
main effects and two factor interactions. However, the data analysis with a
regression subsetting procedure can be more involved than the simple analysis
of 2k−p designs. Also, if a three-factor interaction like that shown in Figure
6.10 is important, it would be very difficult to detect with regression subset
selection. Therefore both traditional 2k−p designs and model robust designs
with complex aliasing should have their place in an experimenter’s toolbox.

6.7 Mixed Level Factorials and Orthogonal Arrays (OAs)

In the preliminary stage of experimentation, where the objective may be to
determine which factors are important from a long list of candidates, two-level
fractional factorial designs or Plackett-Burman designs are often appropriate.
If a factor has quantitative levels, the two levels are denoted symbolically
by (−) and (+), where (−) represents the lowest level the experimenter would
consider, and (+) represents the highest level the experimenter would consider.
The high and low are usually spread out as far as feasibly possible in order
to accentuate the signal or difference in response between the two levels. If a
factor has qualitative levels, the (−) and (+) designations are arbitrary, but
the two levels chosen normally would be two that the experimenter believes
should result in the maximum difference in response.

Sometimes, however, two levels for each factor may not be adequate. In cases
where the experimenter would like to consider nonlinear effects of quantita-
tive factors or qualitative factors with more than two alternatives, two-level
fractional designs will not be suitable. For example, Fannin et al. (1981) re-
port an experiment investigating the effects of four three-level factors and two
two-level factors upon the rate of bacterial degradation of phenol for the pur-
pose of evaluating the fate of chemicals in aquatic ecosystems. A full factorial
would require 34 × 22 = 324 experiments; however, the study was completed
using only a fraction of these runs by utilizing a mixed level fractional factorial
design based on an orthogonal array. Taguchi (1986) describes an experiment
to determine the factors that affect the durability of an auto clutch spring.
The factors and levels are shown in the table on the next page.

The levels of factors A, C, F , and G represented discrete alternatives that
were of interest. Factors B, D, and E were continuous factors and three levels
were included in order to determine whether there was a curvilinear relation
between these factor levels and durability of the clutch springs. There was
also interest in the interaction between factors D and F and the interaction


